
1.

2.

API Dokumentation v5

Getting started
Loadings

Loading via npm
Prerequisites
How to use the correct registry
Installation

TL;DR
Loading via CDN

Polyfills
Activation

Interface
Configuration
Methods

Further methods on the CBCVideoplayer object
create
onEvent
onEventUnfiltered

Instance methods
async loadVideo
registerPlugin
pause
async play
async destroy
getLogFiles
getCurrentTime
isSupportedPlatform
isSupportedDRMPlatform
toggleCssClass
isPlaying
getDuration
isAd
enterFullscreen
exitFullscreen
isFullscreen
setMaxVideoQuality
updateMetadata
updateContentInfo
disallowFullscreen
disabledActions

LoadVideo call's configuration
Events

CustomEvents
AdvertisingEvents
ControlsEvent
PlayerEvent

Ad Errors
Custom Controls

Custom Controls via NPM
Custom Controls via CDN

Getting started

Loadings

Loading via npm

Prerequisites

The installation via npm requires , or a similar framework for your code to be interpreted by the browser. In React, webpack browserify
Angular, Vue or similar technologies often is included by default.webpack
Access to the npm-Registry (https://npm-registry.netrtl.com/).

How to use the correct registry

If you already have access to the npm-Registry, please keep in mind to store the correct Registry in your npm. You can check your npm-Registry by calling
 in a shell. This call should return the registry url (https://npm-registry.netrtl.com/). If not, you can set the correct registry by calling npm get registry npm

 in a shell.set registry https://npm-registry.netrtl.com

Installation

Please make sure, that the project you want to install the player in already uses npm. If not you can initialize npm in your project by calling .npm init -y

Install the latest version of player with the following command: .npm install @cbc/videoplayer

If you want to install a special version add at the end of that command. For example installs the @x.x.x npm install @cbc/videoplayer@5.0.1
CBCVideoplayer in version 5.0.1. Whereas installs the latest version of the CBCVideoplayer in version 5.1.x.npm install @cbc/videoplayer@5.1

Please make sure that the file should contain a new entry of the CBCVideoplayer with the specified version. A file package.json package-lock.json
should exist now as well. This file is important to make sure, that f.e. colleagues are able to install exactly the same versions of all packages you installed.
The CBCVideoplayer included. For this reason the should both be added to your version control system.package.json and package-lock.json

The CBCVideoplayer is now available in your JavaScript Code. You can either import it via or import CBCVideoplayer from '@cbc/videoplayer'
.const CBCVideoplayer = require('@cbc/videoplayer')

TL;DR

npm install @cbc/videoplayer

Loading via CDN

To load the CBCVideoplayer via CDN simply add the following to your :<script> <head>

<script src=" lib/cbc/videoplayer/5/dist/videoplayer-bundle.js"></script>https://bilder-a.akamaihd.net/

The 5 may be replaced by any available version.

For example the following loads the exact version 5.0.1:<script>

<script src=" /lib/cbc/videoplayer/5.0.1/dist/videoplayer-bundle.js"></script>https://bilder-a.akamaihd.net

Or the latest version of 5.1.x:

<script src=" /lib/cbc/videoplayer/5.1/dist/videoplayer-bundle.js"></script>https://bilder-a.akamaihd.net

Polyfills

Please keep in mind that the includes polyfills for unsupported browser features. If your application already loads polyfills by videoplayer-bundle.js
itself make sure to load the CBCVideoplayer bundle without polyfills included, to make sure that there are no conflicts:

<script src=" /lib/cbc/videoplayer/5/dist/videoplayer.js"></script>https://bilder-a.akamaihd.net

Activation

Before using the CBCVideoplayer it is important to notice that the player contains a whitelist of URLs that are allowed to use that player. Please make sure
that your test and production environments are listed in that whitelist.

A mirror of that whitelist can be found here:

Player URLs whitelist

If you need an activation feel free to reach out to the player squad, especially to Rogge, Fabian.

Interface
To integrate the player in your site it has to be initialized first. Use the method on the object to do that:create CBCVideoplayer

CBCVideoplayer.create(videoElementId: string, config: CbcVideoplayerConfig, videoElementId?: string)

Configuration

The configuration schema is the following:

type CbcVideoplayerConfig = {
 : { page // General settings for the page

: fullscreenElementId string, // If id is set, player trys to toggle Fullscreen on element
: airPlay boolean, // If airplay is allowed

: backButton boolean, // If a back button should be rendered in the top left corner
: country string, // Country code of the wrapping page
: { settings // Settings for the controls
: audio boolean, // If an audio selection should be shown

: subtitles boolean, // If a subtitle selection should be shown
: [{ videoQuality // A list of all available video qualities

: limit integer, // Max bitrate

https://confluence.netrtl.com/pages/viewpage.action?pageId=636062679

: label string, // Description text
: sublabel string, // Description text
: isPremium boolean, // If this quality should only be choosable for premium users

: checked boolean // If this quality is checked
}]

 },
: { controls // URLs for customized controls (see Custom Controls)
: jsUrl string,
: cssUrl string

} ,
: [] addableIDsWhitelist string // A whitelist of HTML-IDs that should not be cleared inside the player

container
} ,

: { tracking // Information used for tracking
: offer string, // The tracking offer

: videoService string, // Name of the wrapping page
: device string, // A device descriptor
: privMode boolean, // If the user has tracking enabled
: display string, // Device type of the user
: { heartbeat // Tracking options for heartbeat
: { options

 : integerbeatInterval , // Interval of the heartbeats
: clickEvent string // The user's click event

}
 },

: { nielsen
 : vcId string, // Channel-ID

: clientId string, // Mediengruppe RTL Deutschland's ID
: sfCode string, // Use "eu-cert" for testing and "eu" in production

: prod string, // Use "vc" to activate Beacon Measurement, "" to deactivate
: apId string // Assigned to channels

} ,
: { googleAnalytics

 : googleAnalyticsId string, // Google Analytics ID
: gaLocation string, // Individual parameter for the googleAnalytics measurement
: gaReferrer string,// Individual parameter for the googleAnalytics measurement

: gaTitle string // Individual parameter for the googleAnalytics measurement
} ,

: { infOnline
 : st string // Individual parameter for the infOnline measurement

} ,
 : {infOnlineLegacy

: string st // Individual parameter for the infOnline measurement
},

: any, chartbeat // Tracking configuration for chartbeat
: nurago any, // Tracking configuration for nurago

: tagCommander any, // Tracking configuration for tagCommander
: facebook any, // Tracking configuration for facebook

: googleAdWords any, // Tracking configuration for googleAdWords
: googleFloodLight any // Tracking configuration for googleFloodLight

} ,
: { features // General activation\deactivation of features

: { concurrentStream // Omit to deactivate streamcheck
: startUrl string, // URL, to start streamcheck

: heartbeatUrl string, // URL, to update streamcheck
: stopUrl string // URL, to stop streamcheck

} ,
: { bitmovinAnalytics
: frontendVersion string, // The client's frontend version
: backendVersion string, // The client's backend version

: customOffer string // Individual offer, besides tracking.offer
} ,

: { logging // Settings for browser's logging
: | | | | level 'TRACE' 'DEBUG' 'INFO' 'WARN' 'ERROR' // Default: 'INFO'

} ,
: { streamingErrors // Internal error measurements

: deviceId string // The users device type
} ,

: { homad // Configuration for anti ad block
: enabled boolean, // If anti ad block is enabled

: clientConfigUrl string // URL to the anti ad block configuration file
}

 },
: { user // Information about the user

: integer statusCode , // A magic number for the user's state, evaluating to: 'free', 'premium', etc.
: id string, // Unique user identifier

: personalisationId string, // The google personalisation ID
: accountPersonalisationId string, // The accoubt personalisation ID

: hdPlayout boolean, // If the user should receive a HD playout
: isPremium boolean, // If the user is premium user
: ovAllowed boolean, // If the user is allowed to choose the original version
: loggedIn boolean, // If the user is logged in

: hashedEMail string, // The hashed user mail
: smartDataId string, // Tracking parameter

: activeExperimentNames string, // Tracking parameter
: variationNames string, // Tracking parameter

: sessionKey string, // An ID that is unique for every login with the same account
: jwt string // A JWT used for further authentication

} ,
: isLivestream boolean, // If the displayed source is a livestream

: unsupportedPlayerConfig any, // An object, passed through to the Bitmovin Player
: unsupportedAdvertisingConfig any // An object, passed through to the Advertising Module

}

Methods

Further methods on the CBCVideoplayer object

There are 2 more methods on the CBCVideoplayer object besides the function. In the following all 3 methods will be explained in detail:create

create

Method signature: (videoElementId: string, cbcVideoplayerConfigInput: CbcVideoplayerConfig) => Player

This method creates a new player instance. To do this 2 arguments get passed: 1. A : HTML ID where the player should be rendered in videoElementId
2. A : Details mentioned abovecbcVideoplayerConfigInput

onEvent

Method signature: onEvent (videoElementId: string, handler: Eventhandler)

Eventhandler signature: (any: Event) => void

The function takes a and a . The equals the player container's ID, that was used to create the onEvent videoElementId handler videoElementId
player. If you have more than one player instance on your page, this method may be used to bind an to a special player instance.Eventhandler

onEventUnfiltered

Method signature: onEventUnfiltered (handler: Eventhandler)

Eventhandler signature: (any: Event) => void

This function binds an on all existing player instances. If there is only one player instance on the site and Eventhandler onEvent onEventUnfiltered
do the same.

Instance methods

The following methods describe the methods on the type that is created by a method call.Player create

The type in general:player

interface Player{
 async loadVideo (loadVideoConfig: CbcLoadVideoConfig): void
 registerPlugin (plugin: Eventhandler): void
 pause (issuer?: string): void
 async play (issuer?: string): void
 async destroy (): void
 getLogFiles (): []Log // Log: {time: Date, logLevel:string, messages: []string}
 getCurrentTime (): number
 isSupportedPlatform (): boolean
 isSupportedDRMPlatform (): boolean
 toggleCssClass (className: string): void
 isPlaying (): boolean
 seek (): void
 getDuration (): number
 isAd (): boolean
 enterFullscreen (): void
 exitFullscreen (): void
 isFullscreen (): boolean
 setMaxVideoQuality (videoQuality: number): void
 updateMetadata(metadata: Meta): void
 updateContentInfo(contentInfo: ContentInfo): void
 disallowFullscreen (): void
 allowFullscreen (): void
 disabledActions (message?: string, actions: DisabledActions[] = [], pause: boolean = false): void
}

async loadVideo

Method signature: async loadVideo (loadVideoConfig: CbcLoadVideoConfig): void

This method loads a video into the player. This call is highly customizable why it is handled in detail in .LoadVideo call's configuration

Please keep in mind that this method is an function. That means that the execution runs asynchronous. To wait for the resolved function result see async
Async-Await documentation on Mozilla Developer Network

registerPlugin

Method signature: registerPlugin (plugin: Eventhandler): void

Eventhandler signature: (any: Event) => void

Registers a player plugin. The eventhandler will be called on every occurring event. In some way this method is equal to a call of the CBCVideoplayer.
 method with the matching .onEvent videoElementId

pause

Method signature: pause (issuer?: string): void

Pauses the player. The may be passed optional to display who (user or api) paused the player.issuer

async play

Method signature: async play (issuer?: string): void

Starts the player. The may be passed optional to display who (user or api) started the player.issuer

Please keep in mind that this method is an function. That means that the execution runs asynchronous. To wait for the resolved function result see async
Async-Await documentation on Mozilla Developer Network

async destroy

Method signature: async destroy (): void

Stops the player and removed it from the DOM. After this function resolved the player instance is not usable anymore.

Please keep in mind that this method is an function. That means that the execution runs asynchronous. To wait for the resolved function result see async
Async-Await documentation on Mozilla Developer Network

getLogFiles

Method signature: getLogFiles (): []Log

Log: { time: Date, logLevel:string, messages: []string}

Returns a list of log entries. This log entries will be logged independently from the configured . This way the player may be configured that it will LogLevel
not log to the browser console, but to a retrievable log file for support cases.

getCurrentTime

Method signature: getCurrentTime (): number

Returns the current playback time in seconds.

isSupportedPlatform

Method signature: isSupportedPlatform (): boolean

Returns if the videoplayer is compatible to the combination of device and browser.

isSupportedDRMPlatform

Method signature: isSupportedDRMPlatform (): boolean

Returns if the playback of DRM content is compatible to the combination of device and browser.

toggleCssClass

Method signature: toggleCssClass (className: string): void

Adds or removes a HTML class on the player container.

isPlaying

Method signature: isPlaying (): boolean

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await

Returns if the player is currently playing.

getDuration

Method signature: getDuration (): number

Returns the total duration (in seconds) of the currently loaded video.

isAd

Method signature: isAd (): boolean

Returns if the player currently plays advertising.

enterFullscreen

Method signature: enterFullscreen (): void

Starts the fullscreen mode programmatically.

exitFullscreen

Method signature: exitFullscreen (): void

Exits the fullscreen mode programmatically.

isFullscreen

Method signature: isFullscreen (): boolean

Returns if the player is currently in fullscreen mode.

setMaxVideoQuality

Method signature: setMaxVideoQuality (videoQuality: number): void

Sets the user's selected max video quality.

updateMetadata

Method signature: updateMetadata(metadata: Meta): void

Update Metadata for tracking.

updateContentInfo

Method signature: updateContentInfo(contentInfo: ContentInfo): void

Update ContentInfo for PlayerUI.

disallowFullscreen

Method signature: disallowFullscreen(): void

Blocks the function to enter fullscreen mode and ends the fullscreen If the user is currently using it.

allowFullscreen

Method signature: allowFullscreen(): void

Allowed to enter fullscreen

disabledActions

Method signature: disabledActions (message?: string, actions: DisabledActions[] = [], pause: boolean = false): void

Disabled player interaction and can shows an overlay with a message
Actions that can be deactivated (DisabledActions): playpause, seek, language, settings

LoadVideo call's configuration

The method signature for looks like the following: loadVideo async loadVideo (loadVideoConfig: CbcLoadVideoConfig): void

The following schema shows the configuration possibilities for the :loadVideoConfig

type Constraint = {
 enabled: boolean, // If the Constraint is enabled
 errorText: string // Error text to be shown if the constraint matches
}

type VideoTime = { // General type for passing time
 inSeconds: number
}

type CbcFairplay = { // Uses `user.jwt` (optional), see CbcVideoplayerConfig
 certificateUrl: string
 url: string
}

type CbcPlayready = {
 url: string // Uses GET-Parameter 'token' in URL or `user.jwt`(optional), see CbcVideoplayerConfig
}

type CbcWidevine = { // Uses `user.jwt` (optional), see CbcVideoplayerConfig
 url: string
}

type CbcLoadVideoConfig = {
 : { meta // Meta information for the video

: id any, // Video ID
: category string, // The video's category

: VideoTime length , // Video length
: title string, // The video's title

: description string, // The video's description text
: fsk string, // FSK text. F.e. "ab 12

: // Supplier of the video content supplier string,
: genre string, // The video's genre
: format string, // The format's name

: previewStart string, // The preview's start. Format: YYYY-MM-DD hh:mm:ss
: startDate string, // The video's publishing date. Format: YYYY-MM-DD hh:mm:ss
: createDate string, // The video's creation date. Format: YYYY-MM-DD hh:mm:ss

: isPayedContent boolean, // If the video is payed content
: isWebOnly boolean, // If the video is only available in web

: refPlanningId number, // individual tracking parameter
: agof string, // individual tracking parameter

: comment string, // individual tracking parameter
: ivw string, // infOnline identification path of the video

: payStatusCode number, // payStatus code of the video like 'free_justmissed' or 'pay_archive'
: startTypeCode number, // startType code of the video like 'autoplay', 'replay' or 'userStart'

: recoStart string // individual tracking parameter
} ,

: { advertising // The ad-playback's general configuration
: privMode boolean, // If the private mode is enabled
: { playAds

 : preroll boolean, // If a preroll should be played
: midroll boolean, // If a midroll should be played
: postroll boolean // If a postroll should be played
: nonLinear boolean // If a nonLinear should be played

} ,
: [] midrollOffsets VideoTime, // If a midroll should be played pass the offsets where the midrolls should

play here
 : {limits

: VideoTime preroll , // How long should a video be to play preroll ads, default is 29
: VideoTime midroll , // How long should a video be to play midroll ads, default ist 479

 : VideoTime // How long should a video be to play non linear ads, default ist 479nonLinear ,
 : VideoTime // How long should a video be to play postroll ads, default is 29postroll ,
 },

: { specialAds
 : companionAds boolean, // If companion ads should be enabled

: vpaidAds boolean // If vpaid ads should be enabled
} ,

: singlePreRoll boolean, // If only one preroll should be played
: skippAbleAds boolean, // If make all Ads skippAble

: { clips
 : prerollBumper boolean, // If there should be a bumper before the preroll

: postrollBumper boolean, // If there should be a bumper before the midroll
: stationBumper boolean, // If there should be a bumper before the postroll

: [] bumperUrls string, // A List of URLs the bumpers will be chosen randomly from
: [] closerUrls string, // A List of URLs the openers will be chosen randomly from
: [] openerUrls string // A List of URLs the bumpers will be chosen randomly from

} ,
: { adCall

 : category string, // video zone identification for the adserver
: contentPartner string, // Individual adcall parameter

: [] fixParams string, // key-value pairs to attach to the adcall
: [] tags string, // key-value pairs with user targeting

: [] defaultTags string, // default targeting as key-value pairs, if no user targeting detected

: referrerUrl string // domain name, default: 'protocoll://hostname'
} ,

} ,
: { styling

 : { logo // settings for the corner logo
: aspectRatioOld boolean, //default: false, set true if aspect ratio is 4:3

: url string, // The URL for the corner logo. Supported formats can be seen here: https://developer.
mozilla.org/en-US/docs/Web/Media/Formats/Image_types

: | | | position 'topLeft' 'topRight' 'bottomCenter' 'bottomRight', // Where the logo should be
positioned

: basewidth number // The base with from where the image should be scaled to the fitting size
}

 },
: { contentInfo

 : productPlacement boolean, // If an advice about product placement should be shown
: contest boolean, // If an advice about ? should be shown
: dontCall boolean, // If an advice 'do not call' should be shown

: fsk string, // A text that should be shown as FSK note (f.e. 'ab 12')
: title string, // The title that should be shown on the top left

: description string, // The subtitle that should be shown on the top left
: format string // The name of the format that should be shown on the top left

} ,
: { behavior

 : autoplay boolean, // If autoplay is enabled
: muted boolean, // If the player is muted

: // Default 'true', enabled smooth video fadeIn and FadeOut at video start smoothFadeIn boolean,
 : // Default 'true', enables pausing and playing video when player was left pauseInactivePlayer boolean,
or entered

} ,
: { videoSource

 : poster string, // URL to the poster image that is shown before the content starts (recommended format: .
jpg)

: { streams
 : dashUrl string, // URL to the dash manifest

: hlsUrl string, // URL to the hls manifest
: progressiveUrl string, // URL to the progressive manifest

: dashHdUrl string, // URL to the dash HD manifest
: hlsHdUrl string // URL to the hls HD manifest

: | | preferredTech string 'hls' 'dash' 'progressive', // Generates the desired stream technology for
the player

} ,
: { parts // May be omitted to disable the part player

: [] breakpoints VideoTime // Breakpoints where the part player insert a chapter switch
} ,

: VideoTime startTime , // A time where the video should start
: VideoTime eshOffset , // An offset from the end of the video, when the ESH-Event should be fired
: { breakpoints

 [:]: VideoTime name string // Breakpoints to be passed // Example: //SIN: { inSeconds: 100 } // The
intro starts after 100 seconds // EIN: { inSeconds: 130 } // The intro ends after 130 seconds

} ,
: { drm

 : securityLevel number, // required securety level, default is 3, 1 is the highest
: | | preferredTech string 'PlayReady' 'Widevine' 'FairPlay', // Generates the desired drm technology

for the player
 : [] // Custom headers for license callheaders string,

: CbcWidevine | Bitmovin.WidevineDRMConfig widevine , // https://bitmovin.com/docs/player/api-reference
/web/web-sdk-api-reference-v8#/player/web/8/docs/interfaces/drm.widevinemodulardrmconfig.html

: CbcPlayready | Bitmovin.PlayReadyDRMConfig playready , // https://bitmovin.com/docs/player/api-
reference/web/web-sdk-api-reference-v8#/player/web/8/docs/interfaces/drm.playreadydrmconfig.html

: CbcFairplay | Bitmovin.FairPlayDRMConfig fairplay // https://bitmovin.com/docs/player/api-reference
/web/web-sdk-api-reference-v8#/player/web/8/docs/interfaces/drm.applefairplaydrmconfig.html

 }
 },

: { constraints // Constraints that should be enabled or disabled
: backgroundColor string, // Set background color for error message
: Constraint concurrentStream , // Whether the player should check for concurrent streams, if so the

errorText will be shown
: Constraint drmPlatformIssue , // ErrorText shown if the DRM check fails on because the browser or device

does not support DRM
: Constraint drmServerIssue , // ErrorText shown if the DRM check fails on the server

: Constraint adBlocker , // Whether the player should check for ad blocks, if so the errorText will be shown
: Constraint downscaling , // scaling down the size of the video, required to increase user awareness when

using adBlockers
: Constraint geoBlocking , // Whether the player should check if the content is allowed to be played in the

playback country, if not the errorText will be shown
: Constraint platformIssue , // Whether the player should check if the platform supports video playback, if

not the errorText will be shown
}

}

Events

https://bitmovin.com/docs/player/api-reference/web/web-sdk-api-reference-v8#/player/web/8/docs/interfaces/drm.widevinemodulardrmconfig.html
https://bitmovin.com/docs/player/api-reference/web/web-sdk-api-reference-v8#/player/web/8/docs/interfaces/drm.widevinemodulardrmconfig.html
https://bitmovin.com/docs/player/api-reference/web/web-sdk-api-reference-v8#/player/web/8/docs/interfaces/drm.playreadydrmconfig.html
https://bitmovin.com/docs/player/api-reference/web/web-sdk-api-reference-v8#/player/web/8/docs/interfaces/drm.playreadydrmconfig.html
https://bitmovin.com/docs/player/api-reference/web/web-sdk-api-reference-v8#/player/web/8/docs/interfaces/drm.applefairplaydrmconfig.html
https://bitmovin.com/docs/player/api-reference/web/web-sdk-api-reference-v8#/player/web/8/docs/interfaces/drm.applefairplaydrmconfig.html

In the following you see a list of the most relevant events that will be passed to s: A complete list ofEventhandler all available events you can find in
: Gitlab

CustomEvents

Event Description

onPlayerLoaded Fired after the player has been initialised

onPlayerReady Fired when all sources have loaded additional ads and the player is ready to start playback

onVideoLoad Fired when the content source request is started

onVideoLoaded Fired when the content source was loaded

onSessionStart Fired after first video load on this page

onSessionEnd Fired after last video unload (after postroll). In the partplayer onSessionEnd only is thrown after the part or last last
postroll

onContentStart Fired on content starteach (except advertising) even in part player mode

onContentEnd Fired on content end (except advertising) even in part player modeeach

onRewind Fired if the user rewinds

onFastForward Fired if the user fast forwards

onEnterPlayer Fired when the player enters the visible area

onLeavePlayer Fired when the player leaves the visible area

onChapterSwitch Fired when a new part is loaded (partplayer)

onConCurrentStreamDetect

onDRMServerError

onGeoBlockingError

onContentTimeChanged

onInfoShow Fired when some kind of information is displayed for the user

onLoadNewContentSource Fired when a new content source has been loaded into the (part) player

onESHOffset Fired when the ESH offset is reached (see LoadVideo call's configuration)

onAdBlockerDetected

onReplay

onUpdateContentInfo

onUpdateMetaData

onDestroyed

onDisabledFullscreenChanged

onDisabledActions

onAdFrameChanged

AdvertisingEvents

https://gitlab.netrtl.com/os/tvnow/player/html5/cbc-videoplayer/-/blob/master/src/cbcVideoplayer/eventEmitter/events.ts
https://gitlab.netrtl.com/os/tvnow/player/html5/cbc-videoplayer/-/blob/master/src/cbcVideoplayer/eventEmitter/events.ts

Event Description

onAdSlotStarted Fired when an ad slot started

onAdSlotComplete Fired when an ad slot is finished

onAdClickThru

onAdError

onAdStopped

onAdMuted

onAdPaused

onAdVideoComplete

onAdVideoStart

onAdPlaying

onAdSkipped

onAdSlotStopped

onAdSlotStart

onAdStarted

onAdStart

onAdUnmuted

onAdVolumeChanged

onGeneralError

ControlsEvent

Event Description

onSelectChapter

onMaxVideoQualitySelected

onBackButtonClicked Fired when BackButton in UI was clicked

onRePlayButtonClicked

onElementClicked

PlayerEvent

Event Description

onDestroy

onReady

onSeek

onSeeked

onVolumeChanged

onVideoQualityChanged

onVideoPlaybackQuality
Changed

onUnmuted

onPlay

onPlaybackFinished

onPlaying

onSourceLoaded

onSourceUnloaded

onStallEnded

onStallStarted

onPaused

onMuted

onFullscreenEnter

onFullscreenExit

onError

Ad Errors
The following list shows all possible errors that can occur while playing an advertising:

ErrorCode Description When

100 XML parsing error. Pre-Ad

101 VAST schema validation error. Pre-Ad

102 VAST version of response not supported. Pre-Ad

200 Trafficking error. The video player received an ad type that it was not expecting and/or cannot display. Pre-Ad

201 Video player expecting different linearity. Pre-Ad

202 Video player expecting different duration. Pre-Ad

203 Video player expecting different size. Pre-Ad

300 General wrapper error. Pre-Ad

301 Timeout of VAST URI provided in wrapper element or of VAST URI provided in a subsequent wrapper element. (RI was
either unavailable or reached a timeout as defined by the video player.)

Pre-Ad

302 Wrapper limit reached, as defined by the video player. Too many wrapper responses have been received with no inLine
response.

Pre-Ad

303 No ads VAST response after one or more wrappers. This also includes the number of empty VAST responses from fallback. Pre-Ad

400 General linear error. The video player is unable to display the linear ad. Pre-Ad

401 File not found. Unable to find linear/mediaFile from URI. Pre-Ad

402 Unable to download or timeout of MediaFile URI. Pre-Ad

403 Could not find a media file that is supported by this video player, based on the attributes of the MediaFile element. Post-Ad

405 Problem displaying a media file. Video player found a MediaFile with supported type but couldn't display it. MediaFile may
include: unsupported codecs, different MIME type than MediaFile@type, unsupported delivery method, etc.

Post-Ad

406 A mezzanine file was required, but not provided. Pre-Ad

407 The mezzanine file was downloaded for the first time, so the ad did not serve. Pre-Ad

408 The ad returned in the VAST response was rejected. Pre-Ad

409 The interactive creative defined in the InteractiveCreativeFile node was not executed. Pre-Ad

410 The code referenced in the Verification node was not executed. Pre-Ad

500 General NonLinearAds error. Pre-Ad

501 Unable to display non-linear ad because creative dimensions do not align with creative display area (in other words, the
creative dimension was too large).

Pre-Ad

502 Unable to fetch NonLinearAds/NonLinear resource. Pre-Ad

503 Could not find NonLinear resource with supported type. Pre-Ad

600 General CompanionAds error. Pre-Ad

601 Unable to display companion because creative dimensions do not fit within the companion display area (in other words,
space was not available).

Pre-Ad

602 Unable to display required companion. Pre-Ad

603 Unable to fetch CompanionAds/Companion resource. Pre-Ad

604 Could not find Companion resource with supported type. Pre-Ad

900 VAST 2 error. Pre-Ad

901 General VPAID error. Post-
Opportu
nity

1000 HomadPenalty Pre-Ad

Custom Controls
As already mentioned in the section the controls can be customized by passing an url for the custom-control JavaScript (Configuration CbcVideoplayerC

) and an url for the custom-control CSS ().onfig.page.controls.jsUrl CbcVideoplayerConfig.page.controls.cssUrl

By default the bitmovin's base controls are used. The player comes with longform controls prepared.

As with the player itself the controls can be loaded via npm or CDN.

Custom Controls via NPM

The latest controls can be installed via .npm i @cbc/videoplayer-controls-longform@1

The JavaScript file can then be found under . node_modules/@cbc/videoplayer-controls-longform/dist/js/bitmovinplayer-ui.min.js
The CSS file under .node_modules/@cbc/videoplayer-controls-longform/dist/css-tvnow/bitmovinplayer-ui.min.css

Please make sure to expose those files via your server and pass that URL to the config as described above.

Custom Controls via CDN

As with the player the controls can also be found on a CDN.

The URL for the JavaScript file is: .https://bilder-a.akamaihd.net/lib/cbc/videoplayer-controls-longform/1/dist/js/bitmovinplayer-ui.min.js

And the URL for the CSS file is: .https://bilder-a.akamaihd.net/lib/cbc/videoplayer-controls-longform/1/dist/css/bitmovinplayer-ui.min.css

Both URLs can now be passed to the configuration.

The config might look like this:

const config = {
 ...
 page: {
 ...
 controls: {
 jsUrl: " /lib/cbc/videoplayer-controls-longform/1/dist/js/bitmovinplayer-ui.min.https://bilder-a.akamaihd.net
js",
 cssUrl: " /lib/cbc/videoplayer-controls-longform/1/dist/css/bitmovinplayer-ui.https://bilder-a.akamaihd.net
min.css"
 },
 ...
 },
 ...
}

https://bilder-a.akamaihd.net/lib/cbc/videoplayer-controls-longform/1/dist/js/bitmovinplayer-ui.min.js
https://bilder-a.akamaihd.net/lib/cbc/videoplayer-controls-longform/1/dist/css/bitmovinplayer-ui.min.css

	API Dokumentation v5

