APl Dokumentation v5

® Getting started
® Loadings
® |oading via npm
® Prerequisites
® How to use the correct registry
® |Installation
* TL,DR
® Loading via CDN
® Polyfills
® Activation
® Interface
® Configuration
® Methods
® Further methods on the CBCVideoplayer object
® create
® onEvent
® onEventUnfiltered
® Instance methods
® async loadVideo
registerPlugin
pause
async play
async destroy
getLogFiles
getCurrentTime
isSupportedPlatform
isSupportedDRMPlatform
toggleCssClass
isPlaying
getDuration
isAd
enterFullscreen
exitFullscreen
isFullscreen
setMaxVideoQuality
updateMetadata
updateContentinfo
disallowFullscreen
® disabledActions
® LoadVideo call's configuration

® Events
CustomEvents
AdvertisingEvents
ControlsEvent
® PlayerEvent
® Ad Errors
® Custom Controls
® Custom Controls via NPM
® Custom Controls via CDN

Getting started

Loadings
Loading via npm

Prerequisites
1. The installation via npm requires webpack, br owseri fy or a similar framework for your code to be interpreted by the browser. In React,

Angular, Vue or similar technologies webpack often is included by default.
2. Access to the npm-Registry (https://npm-registry.netrtl.com/).

How to use the correct registry
If you already have access to the npm-Registry, please keep in mind to store the correct Registry in your npm. You can check your npm-Registry by calling

npm get regi stry inashell. This call should return the registry url (https://npm-registry.netrtl.com/). If not, you can set the correct registry by calling npn
set registry https://npmregistry.netrtl.comina shell

Installation

Please make sure, that the project you want to install the player in already uses npm. If not you can initialize npm in your project by calling npm i nit -y.
Install the latest version of player with the following command: npm i nstal | @hbc/ vi deopl ayer.

If you want to install a special version add @. x. x at the end of that command. For example npm i nstal | @bc/ vi deopl ayer @. 0. 1 installs the
CBCVideoplayer in version 5.0.1. Whereas npm i nstal | @bc/ vi deopl ayer @. 1 installs the latest version of the CBCVideoplayer in version 5.1.x.

Please make sure that the package. j son file should contain a new entry of the CBCVideoplayer with the specified version. A package- | ock. j son file
should exist now as well. This file is important to make sure, that f.e. colleagues are able to install exactly the same versions of all packages you installed.
The CBCVideoplayer included. For this reason the package. j son and package- | ock. j son should both be added to your version control system.

The CBCVideoplayer is now available in your JavaScript Code. You can either import it via i nport CBCVi deopl ayer from' @bc/ vi deopl ayer' or
const CBCVi deopl ayer = require(' @bc/vi deopl ayer').

TL;DR

npminstall @hbc/videopl ayer

Loading via CDN

To load the CBCVideoplayer via CDN simply add the following <scri pt > to your <head>:

<script src="https://bilder-a.akamai hd. net/Iib/cbc/videopl ayer/5/dist/videopl ayer-bundl e.js"></script>

The 5 may be replaced by any available version.

For example the following <scr i pt > loads the exact version 5.0.1:

<script src="https://bilder-a.akamai hd. net/Ilib/cbc/videoplayer/5.0.1/dist/videopl ayer-bundl e.js"></script>
Or the latest version of 5.1.x:

<script src="https://bilder-a.akamai hd. net/lib/cbc/videopl ayer/5. 1/di st/vi deopl ayer-bundl e.js"></script>

Polyfills

Please keep in mind that the vi deopl ayer - bundl e. j s includes polyfills for unsupported browser features. If your application already loads polyfills by
itself make sure to load the CBCVideoplayer bundle without polyfills included, to make sure that there are no conflicts:

<script src="https://bilder-a.akamai hd. net/|ib/cbc/videopl ayer/5/dist/videoplayer.js"></script>

Activation

Before using the CBCVideoplayer it is important to notice that the player contains a whitelist of URLs that are allowed to use that player. Please make sure
that your test and production environments are listed in that whitelist.

A mirror of that whitelist can be found here:
Player URLs whitelist

If you need an activation feel free to reach out to the player squad, especially to Rogge, Fabian.

Interface

To integrate the player in your site it has to be initialized first. Use the cr eat e method on the CBCVi deopl ayer object to do that:

CBCVi deopl ayer. creat e(vi deoEl enent 1 d: string, config: CbcVi deopl ayerConfig, videoEl ementld?: string)

Configuration

The configuration schema is the following:

type CbcVi deopl ayer Config = {
page: { // GCeneral settings for the page

full screenEl ementld: string, // If idis set, player trys to toggle Fullscreen on el enment
airPlay: boolean, // If airplay is allowed
backButton: boolean, // |If a back button should be rendered in the top |eft corner
country: string, // Country code of the w apping page
settings: { // Settings for the controls

audi o: boolean, // If an audio selection should be shown

subtitles: boolean, // If a subtitle selection should be shown

videoQuality: [{ // Alist of all available video qualities

limt: integer, // Max bitrate

https://confluence.netrtl.com/pages/viewpage.action?pageId=636062679

label : string, // Description text

subl abel : string, // Description text

isPremium boolean, // If this quality should only be choosable for prem um users
checked: boolean // If this quality is checked

1

1

controls: { // URLs for custom zed controls (see Custom Controls)
jsUl: string,
cssUrl: string

}
addabl el DsWhitelist: [string]l // A whitelist of HTM.-1Ds that should not be cleared inside the player
cont ai ner

tracking: { // Information used for tracking
offer: string, // The tracking offer
vi deoService: string, // Nanme of the wapping page
device: string, // A device descriptor
privMode: boolean, // |If the user has tracking enabl ed
di splay: string, // Device type of the user
heartbeat: { // Tracking options for heartbeat

options: {
beatInterval: integer, // Interval of the heartbheats
clickEvent: string // The user's click event
}
}
ni el sen: {
vcld: string, // Channel-1D
clientld: string, // Mediengruppe RTL Deutschland's ID
sf Code: string, // Use "eu-cert" for testing and "eu" in production
prod: string, // Use "vc" to activate Beacon Measurenent, "" to deactivate
apld: string // Assigned to channels
e

googl eAnal ytics: {
googl eAnal yticsld: string, // Google Analytics ID
gaLocation: string, // Individual paraneter for the googl eAnal ytics neasurenent
gaReferrer: string,// Individual parameter for the googl eAnal ytics neasurenent
gaTitle: string // Individual paranmeter for the googl eAnal yti cs neasurenent

1
infOnline: {
st: string // Individual paraneter for the infOnline neasurenent

N
infOnlineLegacy: {

st: string // Individual paraneter for the infOnline neasurenent
b

chartbeat: any, // Tracking configuration for chartbeat
nurago: any, // Tracking configuration for nurago
tagCommander: any, // Tracking configuration for tagComrander
facebook: any, // Tracking configuration for facebook
googl eAdWords: any, // Tracking configuration for googl eAdWrds
googl eFl oodLi ght: any // Tracking configuration for googl eFl oodLi ght
e
features: { // Ceneral activation\deactivation of features
concurrentStream { // Omt to deactivate streantheck
startUrl: string, // URL, to start streantheck
heartbeatUrl: string, // URL, to update streantheck
stopUrl: string // URL, to stop streantheck
}
bi t movi nAnal ytics: {
frontendVersion: string, // The client's frontend version
backendVersion: string, // The client's backend version
custonOffer: string // Individual offer, besides tracking.offer

Ibggi ng: { // Settings for browser's |ogging
level: "TRACE | 'DEBUG | "INFO | 'WARN | 'ERROR // Default: 'INFO
b

stream ngErrors: { // Internal error neasurenents
deviceld: string // The users device type
1

homad: { // Configuration for anti ad bl ock
enabl ed: boolean, // If anti ad block is enabl ed
clientConfigUl: string // URL to the anti ad block configuration file

}
.
user: { // Infornation about the user
statusCode: integer, // A magic nunber for the user's state, evaluating to: 'free', 'premuni, etc.
id: string, // Unique user identifier
personalisationld: string, // The google personalisation ID
account Personal i sationld: string, // The accoubt personalisation ID
hdPl ayout: boolean, // |If the user should receive a HD pl ayout
i sPremium boolean, // If the user is prem um user
ovAl | owed: boolean, // If the user is allowed to choose the original version
| oggedl n: boolean, // If the user is logged in
hashedEMai | : string, // The hashed user mail
smartDatal d: string, // Tracking paraneter

activeExperi ment Nanes: string, // Tracking paraneter
variati onNanes: string, // Tracki ng paraneter
sessionKey: string, // An ID that is unique for every login with the sanme account
jw: string // A JW used for further authentication
}
i sLivestream boolean, // |If the displayed source is a |livestream
unsupport edPl ayer Config: any, // An object, passed through to the Bitrmovin Player
unsuppor t edAdvertisingConfig: any // An object, passed through to the Advertising Mdul e

Methods

Further methods on the CBCVideoplayer object

There are 2 more methods on the CBCVideoplayer object besides the cr eat e function. In the following all 3 methods will be explained in detail:

create
Method signature: (vi deoEl enent 1 d: string, cbcVi deopl ayer Confi gl nput: CbcVi deopl ayer Config) => Pl ayer

This method creates a new player instance. To do this 2 arguments get passed: 1. A vi deoEl enent | d: HTML ID where the player should be rendered in
2. A cbcVi deopl ayer Conf i gl nput : Details mentioned above

onEvent
Method signature: onEvent (vi deoEl ement1d: string, handl er: Eventhandler)
Event handl er signature: (any: Event) => void

The onEvent function takes a vi deoEl enent | d and a handl er. The vi deoEl enent | d equals the player container's ID, that was used to create the
player. If you have more than one player instance on your page, this method may be used to bind an Event handl er to a special player instance.

onEventUnfiltered
Method signature: onEvent Unfil tered (handl er: Eventhandl er)
Event handl er signature: (any: Event) => void

This function binds an Event handl er on all existing player instances. If there is only one player instance on the site onEvent and onEvent Unfil t ered
do the same.

Instance methods
The following methods describe the methods on the Pl ayer type that is created by a cr eat e method call.

The pl ayer type in general:

interface Player{
async | oadVi deo (| oadVi deoConfig: ChcLoadVi deoConfig): void
regi sterPlugin (plugin: Eventhandl er): void
pause (issuer?: string): void
async play (issuer?: string): void
async destroy (): void
getLogFiles (): []Log /1 Log: {tine: Date, |ogLevel:string, nessages: []string}
getCurrentTinme (): nunber
i sSupportedPl atform (): bool ean
i sSupport edDRVPl at form (): bool ean
toggl eCssC ass (classNane: string): void
isPlaying (): bool ean
seek (): void
getDuration (): nunber
isAd (): bool ean
enterFul I screen (): void
exitFullscreen (): void
i sFull screen (): bool ean
set MaxVi deoQual ity (videoQuality: number): void
updat eMet adat a(mret adata: Meta): void
updat eCont ent | nf o(contentlnfo: Contentlnfo): void
di sal | owFul | screen (): void
al | owFul I screen (): void
di sabl edActi ons (nessage?: string, actions: DisabledActions[] =[], pause: boolean = false): void

}

async loadVideo

Method signature: async | oadVi deo (| oadVi deoConfi g: CbclLoadVi deoConfig): void

This method loads a video into the player. This call is highly customizable why it is handled in detail in LoadVideo call's configuration.

Please keep in mind that this method is an async function. That means that the execution runs asynchronous. To wait for the resolved function result see
Async-Await documentation on Mozilla Developer Network

registerPlugin
Method signature: r egi st er Pl ugi n (plugi n: Eventhandler): void
Event handl er signature: (any: Event) => void

Registers a player plugin. The eventhandler will be called on every occurring event. In some way this method is equal to a call of the CBCVi deopl ayer .
onEvent method with the matching vi deoEl enent | d.

pause
Method signature: pause (i ssuer?: string): void

Pauses the player. The i ssuer may be passed optional to display who (user or api) paused the player.
async play

Method signature: async play (issuer?: string): void

Starts the player. The i ssuer may be passed optional to display who (user or api) started the player.

Please keep in mind that this method is an async function. That means that the execution runs asynchronous. To wait for the resolved function result see
Async-Await documentation on Mozilla Developer Network

async destroy
Method signature: async destroy (): void
Stops the player and removed it from the DOM. After this function resolved the player instance is not usable anymore.

Please keep in mind that this method is an async function. That means that the execution runs asynchronous. To wait for the resolved function result see
Async-Await documentation on Mozilla Developer Network

getLogFiles
Method signature: get LogFiles (): []Log
Log:{ tine: Date, |logLevel:string, nessages: []string}

Returns a list of log entries. This log entries will be logged independently from the configured LogLevel . This way the player may be configured that it will
not log to the browser console, but to a retrievable log file for support cases.

getCurrentTime
Method signature: get Current Ti ne (): nunber

Returns the current playback time in seconds.

isSupportedPlatform

Method signature: i sSupportedPl atform (): bool ean

Returns if the videoplayer is compatible to the combination of device and browser.
isSupportedDRMPIlatform

Method signature: i sSupport edDRWPl atform (): bool ean

Returns if the playback of DRM content is compatible to the combination of device and browser.
toggleCssClass

Method signature: t oggl eCssCl ass (cl assNanme: string): void

Adds or removes a HTML class on the player container.

isPlaying

Method signature: i sPl ayi ng (): bool ean

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await

Returns if the player is currently playing.

getDuration

Method signature: get Durati on (): nunber

Returns the total duration (in seconds) of the currently loaded video.
isAd

Method signature: i sAd (): bool ean

Returns if the player currently plays advertising.

enterFullscreen
Method signature: ent er Ful | screen (): void

Starts the fullscreen mode programmatically.

exitFullscreen
Method signature: exi t Ful | screen (): void

Exits the fullscreen mode programmatically.

isFullscreen
Method signature: i sFul | screen (): bool ean

Returns if the player is currently in fullscreen mode.

setMaxVideoQuality
Method signature: set MaxVi deoQual ity (vi deoQuality: nunber): void

Sets the user's selected max video quality.

updateMetadata
Method signature: updat eMet adat a(met adat a: Meta): void

Update Metadata for tracking.

updateContentinfo
Method signature: updat eCont ent | nf o(cont ent I nfo: ContentlInfo): void

Update Contentinfo for PlayerUl.

disallowFullscreen

Method signature: disallowFullscreen() : voi d

Blocks the function to enter fullscreen mode and ends the fullscreen If the user is currently using it.
allowFullscreen

Method signature: allowFullscreen() : voi d

Allowed to enter fullscreen

disabledActions
Method signature: disabledActions (message?: string, actions: DisabledActions[] = [], pause: boolean = false): void

Disabled player interaction and can shows an overlay with a message
Actions that can be deactivated (DisabledActions): playpause, seek, language, settings

LoadVideo call's configuration
The method signature for | oadVi deo looks like the following: async | oadVi deo (| oadVi deoConfi g: CbcLoadVi deoConfig): void

The following schema shows the configuration possibilities for the | oadVi deoConfi g:

type Constraint

enabl ed: boolean, // |If the Constraint is enabl ed

errorText: string // Error text to be shown if the constraint matches
}
type VideoTine = { // General type for passing tine
inSeconds: nunber
}
type CbcFairplay = { // Uses “user.jwt" (optional), see CbcVideopl ayerConfig
certificateUl: string
url: string
type ChcPl ayready = {
url: string // Uses GET-Paraneter 'token' in URL or “user.jw (optional), see CbcVideopl ayerConfig
}
type CbhcWdevine = { // Uses “user.jwt" (optional), see ChcVideopl ayerConfig
url: string
}

type ChcLoadVi deoConfig = {
neta: { // Meta information for the video

id: any, // Video ID

category: string, // The video's category

length: VideoTime, // Video |ength

title: string, // The video's title

description: string, // The video's description text

fsk: string, // FSK text. F.e. "ab 12

supplier: string, // Supplier of the video content

genre: string, // The video's genre

format: string, // The format's nane

previewStart: string, // The preview s start. Format: YYYY-MW DD hh: nm ss
startDate: string, // The video's publishing date. Format: YYYY-MW DD hh: mm ss
createDate: string, // The video's creation date. Fornat: YYYY-MW DD hh: mm ss

i sPayedContent: boolean, // If the video is payed content

i sWebOnly: boolean, // If the video is only available in web
ref Pl anni ngl d: nunber, // individual tracking paraneter

agof: string, // individual tracking paraneter

coment: string, // individual tracking paraneter

ivw string, // infOnline identification path of the video

paySt at usCode: nunber, // payStatus code of the video like 'free_justnissed or 'pay_archive'
start TypeCode: nunber, // startType code of the video like "autoplay', 'replay’ or 'userStart'
recoStart: string // individual tracking paraneter

aavert ising: { // The ad-playback's general configuration

privhMode: boolean, // |If the private node is enabl ed

pl ayAds: {
preroll: boolean, // If a preroll should be played
mdroll: boolean, // If a mdroll should be played
postroll: boolean // If a postroll should be played
nonLi near: boolean // |f a nonLinear should be played

}
mdrol | Offsets: [] VideoTine, // If a mdroll should be played pass the offsets where the midrolls should

play here
limts: {
preroll: VideoTinme, // How long should a video be to play preroll ads, default is 29
mdroll: VideoTime, // How long should a video be to play mdroll ads, default ist 479
nonLi near: VideoTine, // How |l ong should a video be to play non linear ads, default ist 479
postroll: VideoTime, // How long should a video be to play postroll ads, default is 29
b

speci al Ads: {

conpani onAds: bool ean, // |f conpanion ads shoul d be enabl ed
vpai dAds: boolean // |f vpaid ads shoul d be enabl ed
I
singlePreRol | : boolean, // If only one preroll should be played
ski ppAbl eAds: boolean, // If nake all Ads skippAble
clips: {
prerol | Bumper: boolean, // |f there should be a bunper before the preroll
postrol | Bunper: boolean, // If there should be a bunper before the nmidroll
stationBunper: boolean, // If there should be a bunper before the postroll
bunmperUrls: [] string, // A List of URLs the bunpers will be chosen randomy from
closerUrls: [] string, // A List of URLs the openers will be chosen randomy from
openerUrls: [] string // A List of URLs the bunpers w |l be chosen randomy from
}
adCal I : {
category: string, // video zone identification for the adserver
contentPartner: string, // Individual adcall paraneter
fixParans: [] string, // key-value pairs to attach to the adcall
tags: [] string, // key-value pairs with user targeting

def aul t Tags: []

string,

/1 default targeting as key-val ue pairs,

if no user targeting detected

referrerUl: string // domain nane, default: 'protocoll://hostnane'

I
b

styling: {
logo: { // settings for the corner |ogo

aspect Rati o0 d: bool ean, //default: false, set true if aspect ratiois 4:3

url: string, // The URL for the corner |ogo. Supported formats can be seen here: https://devel oper.
nozi |l | a. or g/ en- US/ docs/ Web/ Medi a/ For mat s/ | nage_t ypes

position: 'topLeft' | 'topRight' | 'bottonCenter' | '"bottonRight', // Were the | ogo should be
posi ti oned

basew dt h: nunber // The base with fromwhere the i nage should be scaled to the fitting size

contentlnfo: {
product Pl acenent: boolean, // |f an advice about product placement should be shown
contest: boolean, // If an advice about ? should be shown
dont Cal | : boolean, // |If an advice 'do not call' should be shown
fsk: string, // A text that should be shown as FSK note (f.e. "ab 12")
title: string, // The title that should be shown on the top left
description: string, // The subtitle that should be shown on the top left
format: string // The nane of the format that should be shown on the top left

behavior: {
aut opl ay: boolean, // If autoplay is enabled
mut ed: boolean, // If the player is nuted
snmoot hFadel n: bool ean, // Default 'true', enabled snmoth video fadeln and FadeCQut at video start
pausel nacti vePl ayer : boolean, // Default 'true', enables pausing and playing video when player was |eft
or entered
I
vi deoSource: {
poster: string, // URL to the poster image that is shown before the content starts (reconmrended format:

j pg)
streans: {

dashUrl: string, // URL to the dash manifest

hisUrl: string, // URL to the hls nanifest

progressiveUrl: string, // URL to the progressive manifest

dashHdUrl: string, // URL to the dash HD nanifest

hl sHdUrl: string // URL to the hls HD manifest

preferredTech: string 'hls' | 'dash' | 'progressive', // Generates the desired streamtechnol ogy for
the player

.
parts: { // May be onmitted to disable the part player

breakpoints: [] VideoTine // Breakpoints where the part player insert a chapter switch
.

startTinme: VideoTine, // A tine where the video should start
eshOffset: VideoTime, // An offset fromthe end of the video, when the ESH Event should be fired
breakpoi nts: {
[nanme: string]: VideoTinme // Breakpoints to be passed // Exanple: //SIN. { inSeconds: 100 } // The
intro starts after 100 seconds // EIN: { inSeconds: 130 } // The intro ends after 130 seconds

1.
drm {
securitylLevel: nunber, // required securety level, default is 3, 1 is the highest
preferredTech: string 'PlayReady' | 'Wdevine' | '"FairPlay', // Generates the desired drmtechnol ogy

for the player

headers: [] string, // Custom headers for |icense call

wi devi ne: CbcWdevine | Bitnovin. WdevineDRMConfig, // https://bitnovin.com docs/player/api-reference
/ web/ web- sdk- api - r ef er ence- v8#/ pl ayer/ web/ 8/ docs/ i nter f aces/ dr m wi devi nenodul ar dr nconfi g. ht nl

pl ayready: CbcPl ayready | Bitmovin. PlayReadyDRMConfig, // https://bitnovin.conm docs/player/api -
ref erence/ web/ web- sdk- api - r ef er ence- v8#/ pl ayer/web/ 8/ docs/ i nterfaces/ drm pl ayr eadydr ntonfi g. ht m

fairplay: CbcFairplay | Bitmovin. FairPlayDRMConfig // https://bitnovin.conm docs/ player/api-reference
/ web/ web- sdk- api - r ef erence- v8#/ pl ayer/ web/ 8/ docs/ i nterfaces/ drm appl ef ai r pl aydr nconfi g. ht m

}
b
constraints: { // Constraints that should be enabled or disabled
backgroundCol or: string, // Set background color for error nessage
concurrent Stream Constraint, // \Wether the player should check for concurrent streans, if so the
errorText will be shown
drnPl atform ssue: Constraint, // ErrorText shown if the DRM check fails on because the browser or device
does not support DRM
drnServerlssue: Constraint, // ErrorText shown if the DRM check fails on the server
adBl ocker: Constraint, // Wiether the player should check for ad blocks, if so the errorText will be shown
downscal i ng: Constraint, // scaling down the size of the video, required to increase user awareness when
usi ng adBl ockers
geoBl ocki ng: Constraint, // Wether the player should check if the content is allowed to be played in the
pl ayback country, if not the errorText will be shown
pl atform ssue: Constraint, // Wiether the player should check if the platformsupports video playback, if
not the errorText will be shown

}
}

Events

https://bitmovin.com/docs/player/api-reference/web/web-sdk-api-reference-v8#/player/web/8/docs/interfaces/drm.widevinemodulardrmconfig.html
https://bitmovin.com/docs/player/api-reference/web/web-sdk-api-reference-v8#/player/web/8/docs/interfaces/drm.widevinemodulardrmconfig.html
https://bitmovin.com/docs/player/api-reference/web/web-sdk-api-reference-v8#/player/web/8/docs/interfaces/drm.playreadydrmconfig.html
https://bitmovin.com/docs/player/api-reference/web/web-sdk-api-reference-v8#/player/web/8/docs/interfaces/drm.playreadydrmconfig.html
https://bitmovin.com/docs/player/api-reference/web/web-sdk-api-reference-v8#/player/web/8/docs/interfaces/drm.applefairplaydrmconfig.html
https://bitmovin.com/docs/player/api-reference/web/web-sdk-api-reference-v8#/player/web/8/docs/interfaces/drm.applefairplaydrmconfig.html

In the following you see a list of the most relevant events that will be passed to Event handl er s: A complete list of all available events you can find in

Gitlab:

CustomEvents

Event

onPl ayer Loaded

onPlayerReady
onVideolLoad
onVideolLoaded

onSessionStart

onSessi onEnd

onCont ent St art
onCont ent End
onRewi nd

onFast For war d
onEnt er Pl ayer
onLeavePl ayer
onChapter Swi tch

onConCurrentStreamDetect
onDRMServerError
onGeoBlockingError
onContentTimeChanged

onl nf oShow

onLoadNewCont ent Sour ce

ONESHO f set

onAdBI ocker Det ect ed

onReplay
onUpdateContentinfo
onUpdateMetaData

onDestroyed

onDisabledFullscreenChanged

onDisabledActions

onAdFrameChanged

AdvertisingEvents

Description

Fired after the player has been initialised

Fired when all sources have loaded additional ads and the player is ready to start playback
Fired when the content source request is started
Fired when the content source was loaded

Fired after first video load on this page

Fired after last video unload (after postroll). In the partplayer onSessionEnd only is thrown after the last part or last
postroll

Fired on each content start (except advertising) even in part player mode

Fired on each content end (except advertising) even in part player mode

Fired if the user rewinds

Fired if the user fast forwards

Fired when the player enters the visible area

Fired when the player leaves the visible area

Fired when a new part is loaded (partplayer)

Fired when some kind of information is displayed for the user

Fired when a new content source has been loaded into the (part) player

Fired when the ESH offset is reached (see LoadVideo call's configuration)

https://gitlab.netrtl.com/os/tvnow/player/html5/cbc-videoplayer/-/blob/master/src/cbcVideoplayer/eventEmitter/events.ts
https://gitlab.netrtl.com/os/tvnow/player/html5/cbc-videoplayer/-/blob/master/src/cbcVideoplayer/eventEmitter/events.ts

Event

onAdSl ot St art ed
onAdSl ot Conpl et e

onAdClickThru
onAdError
onAdStopped
onAdMuted
onAdPaused
onAdVideoComplete
onAdVideoStart
onAdPlaying
onAdSkipped
onAdSlotStopped
onAdSlotStart
onAdStarted
onAdStart
onAdUnmuted
onAdVolumeChanged

onGeneralError

ControlsEvent

Event

onSelectChapter

Description

Fired when an ad slot started

Fired when an ad slot is finished

Description

onMaxVideoQualitySelected

onBackButtonClicked
onRePlayButtonClicked

onElementClicked

PlayerEvent

Event

onDestroy

onReady

onSeek

onSeeked
onVolumeChanged
onVideoQualityChanged

onVideoPlaybackQuality
Changed

onUnmuted

Fired when BackButton in Ul was clicked

Description

onPlay

onPlaybackFinished

onPlaying

onSourceLoaded

onSourceUnloaded

onStallEnded

onStallStarted

onPaused

onMuted

onFullscreenEnter

onFullscreenExit

onError

Ad Errors

The following list shows all possible errors that can occur while playing an advertising:

ErrorCode

100

101

102

200

201

202

203

300

301

302

303

400

401

402

403

405

406

407

408

409

410

500

Description
XML parsing error.
VAST schema validation error.
VAST version of response not supported.
Trafficking error. The video player received an ad type that it was not expecting and/or cannot display.
Video player expecting different linearity.
Video player expecting different duration.
Video player expecting different size.
General wrapper error.

Timeout of VAST URI provided in wrapper element or of VAST URI provided in a subsequent wrapper element. (Rl was
either unavailable or reached a timeout as defined by the video player.)

Wrapper limit reached, as defined by the video player. Too many wrapper responses have been received with no inLine
response.

No ads VAST response after one or more wrappers. This also includes the number of empty VAST responses from fallback.

General linear error. The video player is unable to display the linear ad.

File not found. Unable to find linear/mediaFile from URI.

Unable to download or timeout of MediaFile URI.

Could not find a media file that is supported by this video player, based on the attributes of the MediaFile element.

Problem displaying a media file. Video player found a MediaFile with supported type but couldn't display it. MediaFile may
include: unsupported codecs, different MIME type than MediaFile@type, unsupported delivery method, etc.

A mezzanine file was required, but not provided.

The mezzanine file was downloaded for the first time, so the ad did not serve.

The ad returned in the VAST response was rejected.

The interactive creative defined in the InteractiveCreativeFile node was not executed.
The code referenced in the Verification node was not executed.

General NonLinearAds error.

When
Pre-Ad
Pre-Ad
Pre-Ad
Pre-Ad
Pre-Ad
Pre-Ad
Pre-Ad
Pre-Ad

Pre-Ad

Pre-Ad

Pre-Ad
Pre-Ad
Pre-Ad
Pre-Ad
Post-Ad

Post-Ad

Pre-Ad
Pre-Ad
Pre-Ad
Pre-Ad
Pre-Ad

Pre-Ad

501 Unable to display non-linear ad because creative dimensions do not align with creative display area (in other words, the Pre-Ad
creative dimension was too large).

502 Unable to fetch NonLinearAds/NonLinear resource. Pre-Ad
503 Could not find NonLinear resource with supported type. Pre-Ad
600 General CompanionAds error. Pre-Ad
601 Unable to display companion because creative dimensions do not fit within the companion display area (in other words, Pre-Ad

space was not available).

602 Unable to display required companion. Pre-Ad
603 Unable to fetch CompanionAds/Companion resource. Pre-Ad
604 Could not find Companion resource with supported type. Pre-Ad
900 VAST 2 error. Pre-Ad
901 General VPAID error. Post-
Opportu
nity
1000 HomadPenalty Pre-Ad

Custom Controls

As already mentioned in the Configuration section the controls can be customized by passing an url for the custom-control JavaScript (CbcVi deopl ayer C
onfig. page. control s.jsUrl)and an url for the custom-control CSS (CbcVi deopl ayer Confi g. page. control s. cssUrl).

By default the bitmovin's base controls are used. The player comes with longform controls prepared.

As with the player itself the controls can be loaded via npm or CDN.

Custom Controls via NPM
The latest controls can be installed via npm i @bc/ vi deopl ayer - control s-1 ongf or m@l.

The JavaScript file can then be found under node_nodul es/ @bc/ vi deopl ayer - cont rol s-1 ongf ormi di st/ s/ bi t movi npl ayer-ui.mn.js.
The CSS file under node_nodul es/ @bc/ vi deopl ayer - control s-1 ongf orm di st/ css-tvnow bi t novi npl ayer - ui . mi n. css.

Please make sure to expose those files via your server and pass that URL to the config as described above.

Custom Controls via CDN

As with the player the controls can also be found on a CDN.

The URL for the JavaScript file is: https://bilder-a.akamaihd.net/lib/cbc/videoplayer-controls-longform/1/dist/js/bitmovinplayer-ui.min.js.
And the URL for the CSS file is: https://bilder-a.akamaihd.net/lib/cbc/videoplayer-controls-longform/1/dist/css/bitmovinplayer-ui.min.css.
Both URLs can now be passed to the configuration.

The config might look like this:

const config = {

page: {
66ﬁtro| s: {
jsUrl: "https://bilder-a.akanmai hd. net/lib/cbc/videopl ayer-control s-Iongfornf1/dist/js/bitnovinplayer-ui.mnn.
is",
cssUrl: "https://bilder-a.akanai hd. net/lib/cbc/videopl ayer-control s-1ongforn 1/di st/ css/bitmovinpl ayer-ui .
mn.css"
}
o

https://bilder-a.akamaihd.net/lib/cbc/videoplayer-controls-longform/1/dist/js/bitmovinplayer-ui.min.js
https://bilder-a.akamaihd.net/lib/cbc/videoplayer-controls-longform/1/dist/css/bitmovinplayer-ui.min.css

	API Dokumentation v5

